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The surface partition of large clusters is derived analytically for a simple statistical model by using the
Laplace-Fourier transformation method. In the limit of small amplitude deformations, a suggested “hills and
dales model” reproduces the leading term of the Fisher result for the surface entropy to within a few percent.
The model also gives the degeneracy prefactor of large clusters. The surface partition of finite clusters is also
discussed.
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I. INTRODUCTION

During last forty years, the Fisher droplet model �FDM�
�1� has been used to analyze the condensation of a gaseous
phase �droplets of all sizes� into a liquid. The systems ana-
lyzed with the FDM are many and varied, including nuclear
multifragmentation �2�, nucleation of real fluids �3�, the com-
pressibility factor of real fluids �4�, clusters of the Ising
model �5�, and percolation clusters �6�. In FDM, the surface
free energy FA of a cluster of A-constituents can be repre-
sented as

FA = ��T�A2/3 + �T ln A . �1�

Here, ��T� is the temperature-dependent surface tension
which in the vicinity of the critical temperature Tc is param-
etrized in the following form: ���T��FDM=�o�1−T /Tc�. The
last contribution in Eq. �1� generates the Fisher power law
with dimensionless parameter �.

From the study of the combinatorics of lattice gas clusters
in two dimensions, Fisher postulated Eq. �1� and its specific
temperature dependence of the surface free energy, which
gives naturally an estimate of Tc. He argued that the
temperature-independent part of exp�−FA /T�, i.e.,
A−� exp��oA2/3 /Tc�, is nothing else but a surface entropy or,
in other words, it is a surface degeneracy factor for the clus-
ter of given volume. The Fisher parametrization of the sur-
face free energy is, of course, not unique. The statistical
multifragmentation model �SMM� �7� commonly used in
the study of nuclear multifragmentation, for instance,
successfully employs another one �7� with ���T��SMM

=�o��Tc
2−T2� / �Tc

2+T2��5/4 and neglects altogether the loga-
rithmic term �T ln A. However, in contrast to FDM, the
SMM describes not only the gaseous phase of nuclear clus-
ters, but the nuclear liquid phase as well on the same footing
�8,9�. Since both models are successful in nuclear multifrag-
mentation, we are confronted with an evident question:
“Which parametrization is correct?”

Moreover, since the FDM is successfully used in many
different fields, we are faced with a few simple, but quite
fundamental questions related to any discrete clusters: “What
is the origin of the Fisher parametrization for the temperature
dependent surface free energy? Is there any general reason

why in many applications the surface entropy of large clus-
ters grows as exp��oA2/3 /Tc�?” This work is devoted to these
questions.

II. HILLS AND DALES MODEL

To answer these questions we consider a statistical model
of surface deformations. We impose a necessary constraint
that the deformations conserve the volume of the cluster of
A-constituents. The model-independent results correspond to
the deformations of vanishing amplitude. Thus, the shape of
the deformation cannot be important to our result and we can
therefore choose one that is regular to simplify our presenta-
tion. For this reason, we shall consider cylindrical deforma-
tions of positive height hk�0 �hills� and negative height −hk
�dales�, with k-constituents at the base. For simplicity, it is
assumed that the top �bottom� of the hill �dale� has the same
shape as the surface of the original cluster of A-constituents.
We also assume that �i� the statistical weight of deformations
exp�−�o��Sk� /s1 /T� is given by the Boltzmann factor due to
the change of the surface ��Sk� in units of the surface per
constituent s1; �ii� all hills of heights hk�Hk �Hk is the maxi-
mal height of a hill with a base of k-constituents� have the
same probability dhk /Hk besides the statistical one; and �iii�
assumptions �i� and �ii� are valid for the dales. These as-
sumptions are not too restrictive and allow us to simplify the
analysis.

With these assumptions, it is possible to find the one-
particle statistical partition of the deformation of the
k-constituent base as a convolution of the two probabilities
discussed above:

zk
± � �

0

±Hk dhk

±Hk
e−�oPk�hk�/Ts1 = Ts1

�1 − e−�oPkHk/Ts1�
�oPkHk

, �2�

where the upper �lower� sign corresponds to hills �dales�.
Here, Pk is the perimeter of the cylinder base.

Now we have to find a geometrical partition �degeneracy
factor� or the number of ways to place the center of a given
deformation on the surface of the A-constituent cluster that is
occupied by the set of �nl

±=0,1 ,2 , . . . 	 deformations of the
l-constituent base. Our next assumption is that the desired
geometrical partition can be given in the excluded volume
approximation
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G = 
SA − �
k=1

Kmax

k�nk
+ + nk

−�s1�s1
−1, �3�

where s1k is the area occupied by the deformation of
k-constituent base �k=1,2 , . . . �, SA is the full surface of the
cluster, and Kmax�SA� is the A-dependent size of the maximal
allowed base on the cluster. The first term in the right-hand
side �r.h.s.� of �3� corresponds to the surface available to
place the center of each of �nk

±	 deformations that exist on the
cluster surface. It is necessary to impose the condition G
�0, which ensures that the deformations do not overlap.
Equation �3� is the van der Waals excluded volume approxi-
mation usually used in statistical mechanics for low particle
densities �7,8,10�, and can be derived for objects of different
sizes in the spirit of Ref. �11�.

According to Eq. �2�, the statistical partition for the hill
with a k-constituent base matches that of the dale; i.e.,
zk

+=zk
−. Therefore, the grand canonical surface partition

�GCSP�

Z�SA� = �
�nk

±=0	

� 
 
k=1

Kmax �zk
+G�

nk
+!

nk
+
�zk

−G�

nk
−!

nk
−���s1G� �4�

corresponds to the conserved �on average� volume of the
cluster because the probabilities of hill and dale of the same
base are identical. The ��s1G�-function in �4� ensures that
only configurations with a positive value of the free surface
of the cluster are taken into account. However, this makes
the calculation of the GCSP rather difficult. In addition, the
standard method to deal with the excluded volume partitions,
the Laplace transform �8,10� in SA, cannot be applied be-
cause of the explicit dependence of Kmax �maximal base of
deformations� on SA. However, the GCSP �4� can be solved
via the Laplace-Fourier technique �12�. The latter employs
the identity

G�SA� = �
−�

+�

d	�
−�

+� d


2�
ei
�SA−	�G�	� , �5�

which is based on the Fourier representation of the Dirac
�-function. The representation �5� allows us to decouple the
additional SA dependence in Kmax�SA� and reduce it to the
exponential one, which can be integrated by the Laplace
transform �12�:

Z�� � �
0

�

dSAe−SAZ�SA�

= �
0

�

dS��
−�

+�

d	�
−�

+� d


2�
ei
�S�−	�−S� �

�nk
±=0	

�

�
 
k=1

Kmax�	�
�zk

+S�eks1�i
−��

nk
+!s1

nk
+

nk
+ �zk

−S�eks1�i
−��

nk
−!s1

nk
−

nk
−���S��

= �
0

�

dS��
−�

+�

d	�
−�

+� d


2�
ei
�S�−	�−S�+S�F�	,−i
�. �6�

After changing the integration variable SA→S�

=SA−�k=1
Kmax�	�k�nk

++nk
−�s1, the constraint of �-function has

disappeared. Next, all nk were summed independently, lead-
ing to the exponential function. Now the integration over S�
in �6� can be done, giving

Z�� = �
−�

+�

d	�
−�

+� d


2�

e−i
	

 − i
 − F�	, − i
�
, �7�

where the function F�	 , ̃� is defined as follows:

F�	,̃� = �
k=1

Kmax�	� 
 zk
+

s1
+

zk
−

s1
�e−ks1̃. �8�

As usual, in order to find the GCSP by the inverse Laplace
transform, it is necessary to study the structure of singulari-
ties of the partition �7�. Hereafter, we will call �7� an isoch-
oric partition, or an isochoric ensemble, since the hills and
dales model �HDM� requires the cluster volume conserva-
tion.

III. ISOCHORIC ENSEMBLE SINGULARITIES

For a finite cluster surface, the structure of singularities of
the isochoric partition �7� can be complicated. To see this, let
us first make the inverse Laplace transform

Z�SA� = �
�−i�

�+i� d

2�i
Z��eSA

= �
−�

+�

d	�
−�

+� d


2�
�

�−i�

�+i� d

2�i

eSA−i
	

 − i
 − F�	, − i
�

= �
−�

+�

d	�
−�

+� d


2�
ei
�SA−	��

�̃n	

ẽnSA
1 −
�F�	,̃n�

�̃n

�−1

,

�9�

where the contour integral in  is reduced to the sum over

the residues of all singular points = ̃n+ i
 with
n=0,1 ,2 , . . ., since this contour in the complex -plane

obeys the inequality ��max�Re�̃n	�. Now all integrations
in �9� can be done, and the GCSP acquires the form

Z�SA� = �
�̃n	

ẽnSA
1 −
�F�SA,̃n�

�̃n

�−1

, �10�

i.e., the double integral in �9� simply reduces to the substitu-
tion 	→SA in the sum over singularities. This remarkable
answer is a partial example of the general theorem on the
Laplace-Fourier transformation properties proved in �12�.

The simple poles in �9� are defined by the condition

̃n=F�SA , ̃n�, and the latter can be cast as a system of two
coupled transcendental equations

Rn = �
k=1

Kmax�SA�

�zk
+ + zk

−�e−kRn cos�Ink� , �11�
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In = − �
k=1

Kmax�SA�

�zk
+ + zk

−�e−kRn sin�Ink� , �12�

for dimensionless variables Rn=s1 Re�̃n� and In=s1 Im�̃n�.
To this point, Eqs. �11� and �12� are general and can be

used for particular models which specify the height of hills
and depth of dales. However, there exists an absolute supre-
mum for the real root �R0 ; I0=0� of these equations. It is
sufficient to consider the limit Kmax�SA�→�, because for
In= I0=0 the r.h.s. of �11� is a monotonically increasing func-
tion of Kmax�SA�. Since zk

+=zk
− are the monotonically decreas-

ing functions of Hk, the maximal value of the r.h.s. of �11�
corresponds to the limit of infinitesimally small amplitudes
of deformations �Hk→0�. Then, for In= I0=0, Eq. �12� be-
comes an identity and Eq. �11� becomes

R0 → 2�
k=1

�

e−�oPkHk/2Ts1e−kR0 = 2�eR0 − 1�−1, �13�

and we have R0=s1̃0�1.060 09. Since for In�0 defined by
�12�, the inequality cos�Ink��1 cannot become the equality
for all values of k simultaneously, it follows that the real root
of �11� obeys the inequality R0�Rn�0. The last result means
that in the limit of infinite cluster �SA→��, the GCSP is
represented by the farthest-right singularity among all simple

poles �̃n	:

�Z�SA��SA→� �
eR0SA/s1

1 +
R0�R0 + 2�

2

� 0.3814eR0SA/s1. �14�

There are two remarkable facts regarding �14�: first, this re-
sult is model independent because in the limit of vanishing
amplitude of deformations all model-specific parameters
vanish; second, in evaluating �14� we did not specify the
shape of the cluster under consideration, but only implicitly
required that the cluster surface together with deformations is
a regular surface without self-intersections. Therefore, for
vanishing amplitude of deformations the latter means that
Eq. �14� should be valid for any non-self-intersecting sur-
faces.

For spherical clusters, the r.h.s. of �14� becomes familiar
�0.3814e1.06 009A2/3

�, which, combined with the Boltzmann

factor of the surface energy e−�oA2/3/T, generates the following
temperature-dependent surface tension of the large cluster:

��T� = �o
1 − 1.06 009
T

�o
� , �15�

which means that the actual critical temperature of the three-
dimensional Fisher model should be Tc=�o /1.06009, i.e.,
6.009% smaller in �o units than Fisher originally supposed.
This equation for the critical temperature remains valid
for the temperature-dependent �o as well. Our result,
given in Eq. �15�, agrees with Fisher estimate of ��T�.
Agreement between our result and ���T��SMM occurs, if �o

= ���T��SMM+1.06009 T.

Equation �14� also allows us to find the exact value of the
degeneracy prefactor �0.3814�, which was unknown in the
FDM and its extensions.

For large but finite clusters, it is necessary to take into

account not only the farthest-right singularity ̃0=R0 /s1 in
�10�, but all other roots with positive real part Rn�0�0. In
this case for each Rn�0 there are two roots ±In of �12� be-
cause the GCSP is real by definition. The roots of Eqs. �11�
and �12� with largest real part are insensitive to the large
values of Kmax�SA�; therefore, it is sufficient to keep
Kmax�SA�→�. For the limit of vanishing amplitude of defor-
mations, Eqs. �11� and �12� can be, respectively, rewritten as

2Rn

Rn
2 + In

2 = eRn cos�In� − 1, �16�

2In

Rn
2 + In

2 = − eRn sin�In� . �17�

After some algebra the system of �16� and �17� can be re-
duced to a single equation for Rn

cos
�4�1 + Rn�
e2Rn − 1

− Rn
2�1/2� = cosh Rn −

sinh Rn

1 + Rn
, �18�

and the quadrature In=�4�1+Rn� / �e2Rn −1�−Rn
2. It can be

shown that, besides the opposite signs, there are two
branches of solutions, In

+ and In
−, for the same n value:

�In�1
± � � 2�n ±

1

�n
, �19�

Rn�1 � �2n2 + 1 − �n��2n2 + 2. �20�

The exact solutions �Rn ; In
±� for n�1 which have the largest

real part are shown in Fig. 1 together with the curve param-
etrized by functions Ix

+ and Rx taken from Eqs. �19� and �20�,
respectively. From Eq. �20� and Fig. 1, it is clear that the
largest real part R1�0.0582 is about 18 times smaller than
R0. Therefore, for a cluster of a few constituents, the correc-
tion to the leading term �14� is exponentially small. Using
the approximations �19� and �20�, for n�2 one can estimate

�ẽnSA
1 −
�F�SA,̃n�

�̃n

�−1� � eSA/2�2n2s1/�2�2n2� ,

�21�

the upper limit of the �Rn ; In
±� root contribution into the

GCSP �10�. This result shows that the total contribution of all
complex poles in �10� is negligibly small compared to the
leading term �14� for a cluster of a few constituents or more.
The latter, however, requires a more careful accounting for
the volume conservation of a cluster.

IV. POSSIBLE ORIGIN OF LOGARITHMIC CORRECTION

The model developed here allows us to give an upper
limit for the surface entropy because it corresponds to the
vanishing amplitude of deformations. As we showed, this
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result is general and universal because in this limit the spe-
cific features of the model are irrelevant to our analysis. To
find the next-order correction to the surface entropy one
should consider the underlying model for deformations. We
leave this for a later paper, but comment on how a power law
may arise within the HDM.

Let us consider the left equality in Eq. �13�, which is valid
for small deformation heights. It can be shown that for SA
�s1, the deformation energy

�oPkHk

2s1
→ −

3

2
Tk

�

�

s1

SA
ln� s1

SA
� �22�

of a k-constituent base, indeed, generates the Fisher power
law A−� for the GCSP �14� of an A-constituent cluster. Now
one can see that besides the coefficient 3T� / �2��
�where �−1=1+2/R0�2+R0���0.61 861�−1�, the term

−k�s1 /SA�ln�s1 /SA� on the right-hand side of �22� is the en-
tropy which gives an a priori uncertainty to measure the
position of k constituents each of area s1 on the surface of the
cluster. A comparison of �22� with any kRn�0 in the left
equality �13� shows that in the limit SA�s1, the ansatz �22�
corresponds to a negligible correction compared to the expo-
nentials eRnSA/s1. Therefore, the Fisher power law is too deli-
cate for the present formulation of the surface partition
model.

V. CONCLUSIONS

In conclusion, we developed a statistical model and de-
rived analytically the general expression �10� for the GCSP
for large clusters which are built up from any discrete con-
stituents. This result is achieved by applying the Laplace-
Fourier transformation technique to the isochoric ensemble,
so named because the HDM conserves volume for the de-
formed cluster. The volume conservation is accounted for by
the equal statistical probabilities for the hills and dales of the
same base. The formalism is general and may be applied to
surface deformations of any type of physical cluster, if the
height and shape of deformations are known. In particular,
the model allows one to consider complicated shapes of de-
formations, including fractals.

We analyzed the limit of vanishing deformations which
allowed us to find a model-independent supremum for the
surface entropy of large clusters. Remarkably, this supremum
exceeds Fisher’s estimate by about 6% in �o units. An exact
value of the degeneracy prefactor of large clusters is found
analytically. The analysis of the corrections to the GCSP �14�
originating from the complex roots of Eqs. �11� and �12�
showed that these corrections are negligible for clusters con-
sisting of more than a few constituents. The HDM allows
one to study the statistical mechanics of volume deforma-
tions of finite clusters, but this task requires further refine-
ments of the model.

ACKNOWLEDGMENTS

The authors appreciate the stimulating discussions with L.
G. Moretto. This work was supported by the US Department
of Energy.

�1� M. E. Fisher, Physics 3, 255 �1967�.
�2� L. G. Moretto et al., Phys. Rep. 287, 249 �1997�.
�3� A. Dillmann and G. E. A. Meier, J. Chem. Phys. 94, 3872

�1991�.
�4� C. S. Kiang, Phys. Rev. Lett. 24, 47 �1970�.
�5� C. M. Mader et al., Phys. Rev. C 68, 064601 �2003�.
�6� D. Stauffer and A. Aharony, Introduction to Percolation �Tay-

lor and Francis, Philadelphia, 2001�.
�7� J. P. Bondorf et al., Phys. Rep. 257, 133 �1995�.

�8� K. A. Bugaev, M. I. Gorenstein, I. N. Mishustin, and W.
Greiner, Phys. Rev. C 62, 044320 �2000�; nucl-th/0007062
�2000�; Phys. Lett. B 498, 144 �2001�; nucl-th/0103075
�2001�.

�9� P. T. Reuter and K. A. Bugaev, Phys. Lett. B 517, 233 �2001�.
�10� M. I. Gorenstein, V. K. Petrov, and G. M. Zinovjev, Phys. Lett.

106B, 327 �1981�.
�11� G. Zeeb et al., nucl-th/0209011.
�12� K. A. Bugaev, Acta Phys. Polon. B, 36, 3083 �2005�.

FIG. 1. �Color online� The first quadrant of the complex plane

s1̃n�Rn+ iIn of the roots of the system of �16� and �17�. The
circles and squares represent the two branches In

− and In
+ of the roots,

respectively. The curve is defined by the approximation given by
�19� and �20� �see text for more details�.
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